Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI
Abstract
When the blood flow to the arteries in brain is blocked, its known as Ischemic stroke or blockage stroke. Ischemic stroke can occur due to the formation of blood clots in other parts of the body. Plaque buildup in arteries, on the other hand, can cause blockages because if it ruptures, it can form blood clots. The b-1000 Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) image was used in a general examination to obtain an image of the part of the brain that had a stroke. In this study, classifications used several variations of layer convolution to obtain high accuracy and high computational consumption using b-1000 Diffusion Weighted (DW) MR in ischemic stroke types: acute, sub-acute and chronic. Ischemic stroke was classified using five variants of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The test results show that the CNN5 architectural design provides the best ischemic stroke classification compared to other architectural designs tested, with an accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 99.861%.
Downloads
References
Indah Permata Sari, Faktor-Faktor yang Berhubungan dengan Terjadinya Stroke Berulang pada Penderita Pasca Stroke, Universitas Muhammadiyah Surakarta, 2015.
A. K. Nugroho, T. A. Putranto, I. K. E. Purnama, and M. H. Purnomo, Multi Segmentation Method for Hemorraghic Detection, 2018 Int. Conf. Intell. Auton. Syst., pp. 62–66, 2018. DOI: https://doi.org/10.1109/ICoIAS.2018.8494039
E. R. da Silva, Ambiente virtual colaborativo de diagn ´ ostico a dist ˆ ancia integrado a ferramentas de manipulac¸ ˜ ao de imagens,” Universidade Federal de Pernambuco, 2010.
A. D. Guo, J. Fridriksson, P. Fillmore, C. Rorden, H. Yu, K. Zheng and S. Wang, Automated Lesion Detection on MRI scans Using Combined Unsupervised and Supervised Methods, BMC Med. Imaging, vol. 15, pp. 1–21, 2015. DOI: https://doi.org/10.1186/s12880-015-0092-x
and A.-B. M. S. N. Farid, B. M. Elbagoury, M. Roushdy, A Comparative Analysis for Support Vector Machines for Stroke Patients, in WSEAS Proceedings of the 7th European Computing Conference, 2013, pp. 71–76.
and P. J. T. Mroczek, J. W. Grzymała-Busse, Z. S. Hippe, A Machine Learning Approach to Mining Brain Stroke Data, Springer Berlin Heidelb., pp. 147–158, 2012. DOI: https://doi.org/10.1007/978-3-642-23172-8_11
C. S. O. Maier and and H. H. oder, N. D. Forkert, T. Martinetz, Classifiers for Ischemic Stroke Lesion Segmentation : A Comparison Study, PLoS One, vol. 10, pp. 1–16, 2015. DOI: https://doi.org/10.1371/journal.pone.0145118
and P. J. M. Havaei, N. Guizard, H. Larochelle, Deep Learning Trends for Focal Brain Pathology Segmentation in MRI, arXiv, vol. abs/1607.0, 2016. DOI: https://doi.org/10.1007/978-3-319-50478-0_6
and N. A. G. Altan, Y. Kutlu, Deep Belief Network Based brain Activity Classification Using EEG From slow Cortical Potentials in Stroke, in Proceedings of the International Conference on Advanced Technology & Sciences, 2016, pp. 233–239.
A. Wouters, P. Dupont, B. Norrving, and R. Laage, Prediction of Stroke Onset Is Improved by Relative Fluid-Attenuated Inversion Recovery and Perfusion Imaging, Stroke, pp. 2559–2564, 2016, doi: 10.1161/STROKEAHA.116.013903. DOI: https://doi.org/10.1161/STROKEAHA.116.013903
M. P. P. ; S. T. ;Toan H. B. Visitsattapongse;Chuchart, Automated Segmentation of Infarct Lesions in T1-Weighted MRI Scans Using Variational Mode Decomposition and, Sensor, vol. 21, pp. 1–18, 2021, doi: https://doi.org/10.3390/s21061952. DOI: https://doi.org/10.3390/s21061952
X. Liu, M. Niethammer, R. Kwitt, and M. Mccormick, Low-Rank to the Rescue – Atlas-based Analyses in the Presence of Pathologies, HHS, vol. 17, pp. 97–104, 2016, doi: 10.1007/978-3-319-10443-0_13. DOI: https://doi.org/10.1007/978-3-319-10443-0_13
A. K. Nugroho, T. A. Putranto, M. H. Pumomo, and I. K. E. Purnama, Semi Automatic Method for Basal Ganglia and White Matter Lesion Segmentation in MRI Images of Cronic Stroke Patients Using Adaptive Otsu, 2018 Int. Conf. Comput. Eng. Netw. Intell. Multimedia, CENIM 2018 - Proceeding, pp. 1–6, 2018, doi: 10.1109/CENIM.2018.8711285. DOI: https://doi.org/10.1109/CENIM.2018.8711285
Ellwaa A. et al, Brain Tumor Segmantation Using Random Forest Trained on Iteratively Selected Patients, 2016, doi: https://doi.org/10.1007/978-3-319-55524-9_13. DOI: https://doi.org/10.1007/978-3-319-55524-9_13
L. Le Folgoc, A. V. Nori, S. Ancha, and A. Criminisi, Lifted Auto-Context Forests for Brain Tumour Segmentation, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10154 LNCS, pp. 171–183, 2016, doi: 10.1007/978-3-319-55524-9_17.
and L. S. L´aszl´o Lefkovits, Szid´onia Lefkovits, Brain Tumor Segmentation with Optimized Random Forest, in MICCAI, 2016, vol. 1, pp. 88–99, doi: 10.1007/978-3-319-55524-9. DOI: https://doi.org/10.1007/978-3-319-55524-9_9
M.-C. L. Bi Song, Chen-Rui Chou, Xiaojing Chen, Albert Huang, Anatomy-Guided Brain Tumor Segmentation and Classification, in International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2017, pp. 162–170, doi: https://doi.org/10.1007/978-3-319-55524-9_16. DOI: https://doi.org/10.1007/978-3-319-55524-9_16
H. V. N. Z. Vemulapalli, Cross-Domain Synthesis of Medical Images Using Efficient Location-Sensitive Deep Network, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 1–8, doi: //doi.org/10.1007/978-3-319-24553-9_83.
M. Ghafoorian et al., Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities, Sci. Rep., no. November 2016, pp. 1–12, 2017, doi: 10.1038/s41598-017-05300-5. DOI: https://doi.org/10.1038/s41598-017-05300-5
M. Z. Abdelrahman Ellwaa, Ahmed Hussein, Essam AlNaggar, Brain Tumor Segmantation Using Random Forest Trained on Iteratively Selected Patients, 2016.
A. C. Loic Le Folgoc, Aditya V. Nori, Lifted Auto-Context Forests for Brain Tumour Segmentation, 2016. DOI: https://doi.org/10.1007/978-3-319-55524-9_17
A.-B. M. S. Heba Mohsena, El-Sayed A.El-Dahshan, El-Sayed M.El-Horbaty, Classification Using Deep Learning Neural Networks for Brain Tumors, Futur. Comput. Informatics J., pp. 68–71, 2018. DOI: https://doi.org/10.1016/j.fcij.2017.12.001
E. L. G. Pedro Henrique BandeiraDiniz, Thales Levi Azevedo Valente, João Otávio Bandeira Diniz, Aristófanes Corrêa Silva, Marcelo Gattassa , Nina Ventura, Bernardo Carvalho Muniz, Detection of White Matter Lesion Regions in MRI Using SLIC0 and Convolutional Neural Network, Comput. Methods Programs Biomed., vol. 167, pp. 49–63, 2018. DOI: https://doi.org/10.1016/j.cmpb.2018.04.011
and V. H. C. D. A. D. R. Pereira, P. P. R. Filho, G. H. De Rosa, J. P. Papa, Stroke Lesion Detection Using Convolutional Neural Networks, 2018.
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, and J. Winn, The P ASCAL Visual Object Classes Challenge : A Retrospective, Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, 2015, doi: 10.1007/s11263-014-0733-5. DOI: https://doi.org/10.1007/s11263-014-0733-5
P. Ambrosini, I. Smal, D. Ruijters, W. J. Niessen, A. Moelker, and T. Van Walsum, A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography, IEEE Trans. Med. Imaging, vol. 0062, no. c, pp. 1–11, 2016, doi: 10.1109/TMI.2016.2625811. DOI: https://doi.org/10.1109/TMI.2016.2625811
R. Rokhana, Classification of Biomedical Data of Thermoacoustic Tomography to Detect Physiological Abnormalities in the Body Tissues, in 2016 International Electronics Symposium (IES) Classification, 2016, vol. 2, pp. 60–65. DOI: https://doi.org/10.1109/ELECSYM.2016.7860976
N. Tamami, P. S. Wardana, R. Rokhana, and H. Hermawan, Neural Network Classification of Supraspinatus Muscle Electromyography Feature Signal, in 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), 2017, pp. 223–228. DOI: https://doi.org/10.1109/ELECSYM.2017.8240407
Y. Yamasari, S. M. S. Nugroho, D. F. Suyatno, and M. H. Purnomo, Meta-Algoritme Adaptive Boosting untuk Meningkatkan Kinerja Metode Klasifikasi pada Prestasi Belajar Mahasiswa, JNTETI, vol. 6, no. 3, pp. 333–341, 2017, doi: http://dx.doi.org/10.22146/jnteti.v6i3.336. DOI: https://doi.org/10.22146/jnteti.v6i3.336
M. H. Purnomo, Klasifikasi Nyeri pada Video Ekspresi Wajah Bayi Menggunakan DCNN Autoencoder dan LSTM, JNTETI, vol. 7, no. 3, pp. 308–316, 2018, doi: http://dx.doi.org/10.22146/jnteti.v7i3.440. DOI: https://doi.org/10.22146/jnteti.v7i3.440
A. Nasuha, T. A. Sardjono, and M. H. Purnomo, Pengenalan Viseme Dinamis Bahasa Indonesia Menggunakan Convolutional Neural Network, JNTETI, vol. 7, no. 3, pp. 258–265, 2018, doi: http://dx.doi.org/10.22146/jnteti.v7i3.433. DOI: https://doi.org/10.22146/jnteti.v7i3.433
S. E. Limantoro, Y. Kristian, and D. D. Purwanto, Pemanfaatan Deep Learning pada Video Dash Cam untuk Deteksi Pengendara Sepeda Motor, JNTETI, vol. 7, no. 2, pp. 3–9, 2018, doi: http://dx.doi.org/10.22146/jnteti.v7i2.419. DOI: https://doi.org/10.22146/jnteti.v7i2.419
W. Setiawan and F. Damayanti, Layers Modification of Convolutional Neural Network for Pneumonia Detection, J. Phys. Conf. Ser., vol. 1477, no. 5, 2020, doi: 10.1088/1742-6596/1477/5/052055. DOI: https://doi.org/10.1088/1742-6596/1477/5/052055
H. Wu, M. Xin, W. Fang, H. M. Hu, and Z. Hu, Multi-Level Feature Network with Multi-Loss for Person Re-Identification, IEEE Access, vol. 7, pp. 91052–91062, 2019, doi: 10.1109/ACCESS.2019.2927052. DOI: https://doi.org/10.1109/ACCESS.2019.2927052
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional networks, Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243. DOI: https://doi.org/10.1109/CVPR.2017.243
M. Sandler, M. Zhu, A. Zhmoginov, and C. V Mar, MobileNetV2: Inverted Residuals and Linear Bottlenecks, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4510–4520. DOI: https://doi.org/10.1109/CVPR.2018.00474
A. D. J. Haicheng Wang, Vineeth Bhaskara, Alex Levinshtein, Stavros Tsogkas, Efficient Super-Resolution Using MobileNetV3, in Computer Vision - ECCV 2020 Workshops - Glasgow, UK, August 23-28, 2020, 2020, pp. 87–102, doi: https://doi.org/10.1007/978-3-030-67070-2_5. DOI: https://doi.org/10.1007/978-3-030-67070-2_5
H. P. A. Tjahyaningtijas, A. K. Nugroho, C. V. Angkoso, I. K. E. Purnama, and M. H. Purnomo, Automatic Segmentation on Glioblastoma Brain Tumor Magnetic Resonance Imaging Using Modified U-Net, Emit. Int. J. Eng. Technol., vol. 8, no. 1, pp. 161–177, 2020, doi: 10.24003/emitter.v8i1.505. DOI: https://doi.org/10.24003/emitter.v8i1.505
Copyright (c) 2022 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.