Analysis of control factors and surface integrity during wire-EDM of Inconel 718 alloy using T-GRA approach
Abstract
In today’s competitive modern manufacturing sectors, there is a vital need of utter precision and rigorous processing using various manufacturing approaches that directly influences the cost and processing duration of mechanized materials in addition to the consistency of the finished products. Therefore, it’s essential to figure out the required output by adjusting the control factors of any machining techniques which resulted in optimal values of the desired outcome. In this study, machining evaluation and process optimization is carried out on volumetric extraction of material namely material removal rate (MRR), kerf obtained during the machining (KW) and surface roughness (SR) of Inconel 718 superalloy during CNC controlled wire- electrical discharge machining. Four controllable factors- pulse interval, wire speed, pulse duration and peak current are considered to investigate the influence on performance measures. Taguchi's L16 has been used to construct the set of experiments before physical experimental runs and most influencing factors have been evaluated using ANOVA. SEM images and EDXS analysis have been resorted to examine the morphology of Inconel 718. These findings assist in identifying the topography of the machined surface. Further, the optimum integration has been obtained for the best yield and recorded using grey relational analysis integrated with Taguchi’s technique (T-GRA). The unfamiliarity of the work is based on consideration of zinc coated thin wire electrode and Taguchi-Grey combined approach of modelling with four levels of experimental design.
Downloads
References
V. Aggarwal, S. S. Khangura, and R. K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, Int. J. Adv. Manuf. Technol., vol. 79, no. 1–4, pp. 31–47, 2015, doi: 10.1007/s00170-015-6797-8. DOI: https://doi.org/10.1007/s00170-015-6797-8
D. Zhu, X. Zhang, and H. Ding, Tool wear characteristics in machining of nickel-based superalloys, Int. J. Mach. Tools Manuf., vol. 64, pp. 60–77, 2013, doi: 10.1016/j.ijmachtools.2012.08.001. DOI: https://doi.org/10.1016/j.ijmachtools.2012.08.001
M. Nalbant, A. Altin, and H. Gökkaya, The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys, Mater. Des., vol. 28, no. 4, pp. 1334–1338, 2007, doi: 10.1016/j.matdes.2005.12.008. DOI: https://doi.org/10.1016/j.matdes.2005.12.008
W. Akhtar, J. Sun, P. Sun, W. Chen, and Z. Saleem, Tool wear mechanisms in the machining of Nickel based super-alloys: A review, Front. Mech. Eng., vol. 9, no. 2, pp. 106–119, 2014, doi: 10.1007/s11465-014-0301-2. DOI: https://doi.org/10.1007/s11465-014-0301-2
S. Pervaiz, A. Rashid, I. Deiab, and M. Nicolescu, Influence of tool materials on machinability of titanium- and nickel-based alloys: A review, Mater. Manuf. Process., vol. 29, no. 3, pp. 219–252, 2014, doi: 10.1080/10426914.2014.880460. DOI: https://doi.org/10.1080/10426914.2014.880460
M. S. Hewidy, T. A. El-Taweel, and M. F. El-Safty, Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM, J. Mater. Process. Technol., vol. 169, no. 2, pp. 328–336, 2005, doi: 10.1016/j.jmatprotec.2005.04.078. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.078
D. R. Unune and H. S. Mali, Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718, Eng. Sci. Technol. an Int. J., vol. 20, no. 1, pp. 222–231, Feb. 2017, doi: 10.1016/j.jestch.2016.06.010. DOI: https://doi.org/10.1016/j.jestch.2016.06.010
H. Payal, S. Maheshwari, and P. S. Bharti, Parametric optimization of EDM process for Inconel 825 using GRA and PCA approach, J. Inf. Optim. Sci., vol. 40, no. 2, pp. 291–307, 2019, doi: 10.1080/02522667.2019.1578090. DOI: https://doi.org/10.1080/02522667.2019.1578090
R. Chalisgaonkar and J. Kumar, Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user’s preferences, Eng. Sci. Technol. an Int. J., vol. 18, no. 2, pp. 125–134, 2015, doi: 10.1016/j.jestch.2014.10.006. DOI: https://doi.org/10.1016/j.jestch.2014.10.006
N. Sharma, R. Khanna, and R. D. Gupta, WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm, Eng. Sci. Technol. an Int. J., vol. 18, no. 2, pp. 171–177, 2015, doi: 10.1016/j.jestch.2014.11.004. DOI: https://doi.org/10.1016/j.jestch.2014.11.004
M. Ehsan Asgar and A. K. Singh Singholi, Parameter study and optimization of WEDM process: A Review, in IOP Conference Series: Materials Science and Engineering, Oct. 2018, vol. 404, no. 1, doi: 10.1088/1757-899X/404/1/012007. DOI: https://doi.org/10.1088/1757-899X/404/1/012007
L. Li, Z. Y. Li, X. T. Wei, and X. Cheng, Machining characteristics of inconel 718 by sinking-EDM and wire-EDM, Mater. Manuf. Process., vol. 30, no. 8, pp. 968–973, 2015, doi: 10.1080/10426914.2014.973579. DOI: https://doi.org/10.1080/10426914.2014.973579
M. Shabgard, S. Farzaneh, and A. Gholipoor, Investigation of the surface integrity characteristics in wire electrical discharge machining of Inconel 617, J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 857–864, 2017, doi: 10.1007/s40430-016-0556-0. DOI: https://doi.org/10.1007/s40430-016-0556-0
L. Li, Y. B. Guo, X. T. Wei, and W. Li, Surface integrity characteristics in wire-EDM of inconel 718 at different discharge energy, Procedia CIRP, vol. 6, no. May, pp. 220–225, 2013, doi: 10.1016/j.procir.2013.03.046. DOI: https://doi.org/10.1016/j.procir.2013.03.046
T. R. Newton, S. N. Melkote, T. R. Watkins, R. M. Trejo, and L. Reister, Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718, Mater. Sci. Eng. A, vol. 513–514, no. C, pp. 208–215, 2009, doi: 10.1016/j.msea.2009.01.061. DOI: https://doi.org/10.1016/j.msea.2009.01.061
M. Gołąbczak, P. Maksim, P. Jacquet, A. Gołąbczak, K. Woźniak, and C. Nouveau, Investigations of geometrical structure and morphology of samples made of hard machinable materials after wire electrical discharge machining and vibro-abrasive finishing, Materwiss. Werksttech., vol. 50, no. 5, pp. 611–615, May 2019, doi: 10.1002/mawe.201800208. DOI: https://doi.org/10.1002/mawe.201800208
M. A. Mohd Zakaria, R. I. Raja Abdullah, M. S. Kasim, and M. H. Ibrahim, Enhancing the Productivity of Wire Electrical Discharge Machining Toward Sustainable Production by using Artificial Neural Network Modelling, Emit. Int. J. Eng. Technol., vol. 7, no. 1, pp. 261–274, 2019, doi: 10.24003/emitter.v7i1.365. DOI: https://doi.org/10.24003/emitter.v7i1.365
F. Klocke, M. Schwade, A. Klink, and A. Kopp, EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications, Procedia Eng., vol. 19, pp. 190–195, 2011, doi: 10.1016/j.proeng.2011.11.100. DOI: https://doi.org/10.1016/j.proeng.2011.11.100
A. Mostafapor and H. Vahedi, Wire electrical discharge machining of AZ91 magnesium alloy; Investigation of effect of process input parameters on performance characteristics, Eng. Res. Express, vol. 1, no. 1, Sep. 2019, doi: 10.1088/2631-8695/ab26c8. DOI: https://doi.org/10.1088/2631-8695/ab26c8
A. P. Markopoulos, E.-L. Papazoglou, and P. Karmiris-Obratański, Experimental Study on the Influence of Machining Conditions on the Quality of Electrical Discharge Machined Surfaces of aluminum alloy Al5052, Machines, vol. 8, no. 1, p. 12, 2020, doi: 10.3390/machines8010012. DOI: https://doi.org/10.3390/machines8010012
T. Babu Rao and A. Gopala Krishna, Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC, Adv. Manuf., vol. 1, no. 3, pp. 265–275, 2013, doi: 10.1007/s40436-013-0029-y. DOI: https://doi.org/10.1007/s40436-013-0029-y
R. Bobbili, V. Madhu, and A. K. Gogia, Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials, Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 664–668, 2015, doi: 10.1016/j.jestch.2015.03.014. DOI: https://doi.org/10.1016/j.jestch.2015.03.014
R. Bobbili, V. Madhu, and A. K. Gogia, Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy, Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 720–726, 2015, doi: 10.1016/j.jestch.2015.05.004. DOI: https://doi.org/10.1016/j.jestch.2015.05.004
S. Banerjee, B. Panja, and S. Mitra, Effect of process parameters on machining EN 47 spring steel through WEDM, Emerg. Mater. Res., vol. 9, no. 3, pp. 628–636, 2020, doi: 10.1680/jemmr.19.00075. DOI: https://doi.org/10.1680/jemmr.19.00075
S. Evran, Surface roughness and material removal rate analyses of hard copper alloy in wire electrical discharge machining, Emerg. Mater. Res., vol. 9, no. 3, pp. 730–737, 2020, doi: 10.1680/jemmr.20.00088. DOI: https://doi.org/10.1680/jemmr.20.00088
G. Veda Prakash et al., Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions, Rev. Sci. Instrum., vol. 87, no. 1, 2016, doi: 10.1063/1.4940420. DOI: https://doi.org/10.1063/1.4940420
D. Julong, Introduction to grey systems theory, J. grey Syst. 1, pp. 1–24, 1989.
A. N. Siddiquee, Z. A. Khan, and Z. Mallick, Grey relational analysis coupled with principal component analysis for optimisation design of the process parameters in in-feed centreless cylindrical grinding, Int. J. Adv. Manuf. Technol., vol. 46, no. 9–12, pp. 983–992, 2010, doi: 10.1007/s00170-009-2159-8. DOI: https://doi.org/10.1007/s00170-009-2159-8
V. Kumar. S and P. Kumar. M, Optimization of cryogenic cooled EDM process parameters using grey relational analysis, J. Mech. Sci. Technol., vol. 28, no. 9, pp. 3777–3784, 2014, doi: 10.1007/s12206-014-0840-9. DOI: https://doi.org/10.1007/s12206-014-0840-9
V. Srivastava and P. M. Pandey, Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode, J. Manuf. Process., vol. 14, no. 3, pp. 393–402, 2012, doi: 10.1016/j.jmapro.2012.05.001. DOI: https://doi.org/10.1016/j.jmapro.2012.05.001
S. Dzionk and M. S. Siemiatkowski, Studying the effect of working conditions on WEDM machining performance of super alloy inconel 617, Machines, vol. 8, no. 3, Sep. 2020, doi: 10.3390/MACHINES8030054. DOI: https://doi.org/10.3390/machines8030054
K. P. Somashekhar, N. Ramachandran, and J. Mathew, Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum, Int. J. Adv. Manuf. Technol., vol. 51, no. 5–8, pp. 611–626, 2010, doi: 10.1007/s00170-010-2645-z. DOI: https://doi.org/10.1007/s00170-010-2645-z
P. C. Pandey and S. T. Jilani, Plasma channel growth and the resolidified layer in edm, Precis. Eng., vol. 8, no. 2, pp. 104–110, 1986, doi: 10.1016/0141-6359(86)90093-0. DOI: https://doi.org/10.1016/0141-6359(86)90093-0
A. Goyal, Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode, J. King Saud Univ. - Sci., vol. 29, no. 4, pp. 528–535, Oct. 2017, doi: 10.1016/j.jksus.2017.06.005. DOI: https://doi.org/10.1016/j.jksus.2017.06.005
T. Jadam, S. K. Sahu, S. Datta, and M. Masanta, EDM performance of Inconel 718 superalloy: application of multi-walled carbon nanotube (MWCNT) added dielectric media, J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 8, 2019, doi: 10.1007/s40430-019-1813-9. DOI: https://doi.org/10.1007/s40430-019-1813-9
P. Kumar, M. Gupta, and V. Kumar, Surface integrity analysis of WEDMed specimen of Inconel 825 superalloy, Int. J. Data Netw. Sci., vol. 2, pp. 79–88, 2018, doi: 10.5267/j.ijdns.2018.8.001. DOI: https://doi.org/10.5267/j.ijdns.2018.8.001
M. E. Asgar and A. K. S. Singholi, Study of the Effect of Dielectric on Performance Measure in EDM, Lect. Notes Mech. Eng., pp. 843–850, 2021, doi: 10.1007/978-981-33-4320-7_75. DOI: https://doi.org/10.1007/978-981-33-4320-7_75
P. Kumar, M. Gupta, and V. Kumar, Microstructural analysis and multi response optimization of WEDM of Inconel 825 using RSM based desirability approach, J. Mech. Behav. Mater., vol. 28, no. 1, pp. 39–61, 2019, doi: 10.1515/jmbm-2019-0006. DOI: https://doi.org/10.1515/jmbm-2019-0006
Copyright (c) 2021 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.