Student Behavior Analysis to Predict Learning Styles Based Felder Silverman Model Using Ensemble Tree Method
Abstract
Learning styles are very important to know so that students can learn effectively. By understanding the learning style, students will learn about their needs in the learning process. One of the famous learning management systems is called Moodle. Moodle can catch student experiences and behaviors while learning and store all student activities in the Moodle Log. There is a fundamental issue in e-learning where not all students have the same degree of comprehension. Therefore, in some cases of learning in E-Learning, students tend to leave the classroom and lack activeness in the classroom. In order to solve these problems, we have to know students' preferences in the learning process by understanding each student's learning style. To find out the appropriate student learning style, it is necessary to analyze student behavior based on the frequency of visits when accessing Moodle E-learning and fill out the Index Learning Style (ILS) questionnaire. The Felder Silverman model's learning style classifies it into four dimensions: Input, Processing, Perception, and Understanding. We propose a learning style prediction model using the Ensemble Tree method, namely Bagging and Boosting-Gradient Boosted Tree. Afterwards, we evaluate the classification results using Stratified Cross Validation and measure the performance using accuracy. The results showed that the Ensemble Tree method's classification efficiency has higher accuracy than a single tree classification model.
Downloads
References
Uday. K. Mothukuri, B. Viswanath Reddy, P. Naveen Reddy, Sarada Gutti, Improvisation of Learning Experience Using Learning Analytics in Elearning, IEEE National Conference on E-Learning & E-Learning Technologies (ELELTECH), 2017. DOI: https://doi.org/10.1109/ELELTECH.2017.8074995
Yunia Ikawati, M. Udin Harun Al Rasyid, Idris Winarno, Student Behavior Analysis to Detect Learning Style in Moodle Learning Management System, IEEE International Electronics Symposium (IES), 2020. DOI: https://doi.org/10.1109/IES50839.2020.9231567
Dwi Susanto, Qurani, N. R., M. Udin Harun Al Rasyid, Develop a User Behavior Analysis Tool in ETHOL Learning Management System, EMITTER International Journal of Engineering Technology, 2021. DOI: https://doi.org/10.24003/emitter.v9i1.570
Birol Ciloglugil, Adaptivity based on Felder-Silverman Learning Styles Model in E-Learning Systems, IEEE International Symposium on Innovative Technologies in Engineering and Science (ISITES), 2016.
Sajid Ahmed, Asif Mahbub, Farshid Rayhan, Rafsan Jani, Swakkhar Shatabda, Dewan Md. Farid, Hybrids Methods for Class Imbalance Learning Employing Bagging with Sampling Techniques, IEEE International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), 2017. DOI: https://doi.org/10.1109/CSITSS.2017.8447799
Pumitara Ruangthong and Saichon Jaiyen, Hybrid Ensembles of Decision Trees and Bayesian Network for Class Imbalance Problem, IEEE International Conference on Knowledge and Smart Technology (KST), 2016. DOI: https://doi.org/10.1109/KST.2016.7440523
Giovanni Seni, John F. Elder, Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions, Synthesis Lectures On Data Mining And Knowledge Discovery, 2010. DOI: https://doi.org/10.2200/S00240ED1V01Y200912DMK002
Hasibur Rahman and Rabiul Islam, Predict Student’s Academic Performance and Evaluate the Impact of Different Attributes on the Performance Using Data Mining Techniques, IEEE International Conference on Electrical & Electronic Engineering (ICEEE), 2017. DOI: https://doi.org/10.1109/CEEE.2017.8412892
M. S. Hasibuan, L. E. Nugroho, P. I. Santoso , Detecting Learning Style Based on Level of Knowledge, IEEE Third International Conference on Informatics and Computing (ICIC), 2018. DOI: https://doi.org/10.1109/IAC.2018.8780435
Hoang Tieu Binh and Bui The Duy, Predicting Students’ performance based on Learning Style by using Artificial Neural Networks, IEEE 9th International Conference on Knowledge and Systems Engineering (KSE), 2017.
M. S. Hasibuan and L. E. Nugroho, Detecting Learning Style Using Hybrid Model, IEEE Conference on e-Learning, e-Management and e-Services (IC3e), 2016. DOI: https://doi.org/10.1109/IC3e.2016.8009049
Wang Peng, Research on Online Learning Behavior Analysis Model in Big Data Environment, EURASIA Journal of Mathematics Science and Technology Education, Vol. 3, pp. 5676-5684, 2017.
Ouafae El Aissaoui, Yasser El Madani El Alami, Lahcen Oughdir, Youssouf El Allioui, Integrating Web Usage Mining for an Automatic Learner Profile Detection: A learning style-based approach, IEEE International Conference on Intelligent Systems and Computer Vision (ISCV), 2018. DOI: https://doi.org/10.1109/ISACV.2018.8354021
Ouafae El Aissaoui, Yasser El Madani El Alami, Lahcen Oughdir, Youssouf El Allioui, A Hybrid Machine Learning Approach to Predict Learning Styles in Adaptive E-Learning System, International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD), pp. 772-786, 2019. DOI: https://doi.org/10.1007/978-3-030-11928-7_70
Manal Abdullah, Asmaa Alqahtani, Jawhara Aljabri, Reem Altowirg, Ruqiah Fallatah, Learning Style Classification Based on Student's Behavior in Moodle Learning Management System, Transaction on Machine Learning and Artificial Intelligence, Vol. 3, No. 1, 2015.
Ling Xiao Li and Siti Soraya Abdul Rahman, Students’ learning style detection using tree augmented naive Bayes, The Royal Society Open Science, 2018. DOI: https://doi.org/10.1098/rsos.172108
Renato Maaliw III, Classification of Learning Styles in Virtual Learning Environment using Data Mining: A Basis for Adaptive Course Design, International Research Journal of Engineering and Technology (IRJET), Vol.3, No.7, 2016.
Keeley Crockett, Annabel Latham, Nicola Whitton, On Predicting Learning Styles in Conversational Intelligent Tutoring Systems using Fuzzy Decision Trees, International Journal of Human-Computer Studies (IJHCS), 2016. DOI: https://doi.org/10.1016/j.ijhcs.2016.08.005
T. Sheeba, Reshmy Krishnan, Prediction of Student Learning Style Using Modified Decision Tree Algorithm in E-Learning System, International Conference on Data Science and Information Technology, Pages 85–90, 2018. DOI: https://doi.org/10.1145/3239283.3239319
Hanan Abdullah Mengash, Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems, IEEE Access, Vol.8, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2981905
Worapat Paireekreng and Takorn Prexawanprasut, An Integrated Model for Learning Style Classification in University Students Using Data Mining Techniques, IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015. DOI: https://doi.org/10.1109/ECTICon.2015.7206951
Richard M. Felder, Learning and Teaching Styles in Engineering Education, Journal of Engineering Education, 1988.
J. R. Quinlan, Induction of decision trees, Machine learning, Springer, Vol. 1, No. 1, pp. 81–106, 1986. DOI: https://doi.org/10.1007/BF00116251
Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, Josep M. Pujol, Data Mining Methods for Recommender Systems, Recommender Systems Handbook, Springer, 2011. DOI: https://doi.org/10.1007/978-0-387-85820-3_2
Leo Breiman, Bagging Predictors, Machine Learning, No.24, pp. 123–140, 1996. DOI: https://doi.org/10.1007/BF00058655
Jerome H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Statist, Vol.29, No.5, pp. 1189–1232, 2001.
Richard M. Felder and Barbara A. Soloman, Index of learning styles questionnaire, Index of Learning Styles Questionnaire (ncsu.edu), s1997.
Copyright (c) 2021 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.