Thermal Analysis of Solar Air Heater with Ventilator Turbine and Fins

  • Arrad Ghani Safitra Politeknik Elektronika Negeri Surabaya, Indonesia
  • Lohdy Diana Politeknik Elektronika Negeri Surabaya, Indonesia
  • Denny Muhammad Agil Politeknik Elektronika Negeri Surabaya, Indonesia
  • Julfan Hafiz Fareza Politeknik Elektronika Negeri Surabaya, Indonesia
  • Nu Rhahida Arini Politeknik Elektronika Negeri Surabaya, Indonesia
Keywords: solar air heater, rectangular fin, low air velocity, thermal, performance

Abstract

Solar air heater (SAH) is a renewable energy application for the drying process. SAH has a challenge to produce high performance under uncertain weather. The performance of SAH can be enhanced by providing the absorber plate by adding the fins. This study aims to evaluate the thermal performance of SAH with rectangular fins SAH at low air velocity. This study compares the performance of SAH without fins and SAH with rectangular fins. Two variations of a tilt angle of SAH are 0° and 30° which are observed in this study. The SAH uses a ventilator turbine to suck air into the collector box. The air velocity is 0.01 m/s. The method is experimental. The SAH is tested under real condition from 9 a.m. to 4 p.m. The measurement tools consist of  a pyranometer, an anemometer, a temperature sensor in the inlet section, 3 sensors in the absorber plate, a sensor in the outlet section,  6 temperature sensors in the drying cabinet. The result showed the thermal efficiency of SAH with rectangular fins is 29.67 % higher than SAH without fins at 0˚ tilt of angle at noon. The thermal efficiency of SAH with rectangular fins is 25.26 % higher than  that of without fins at 30˚ tilt of angle at noon.

Downloads

Download data is not yet available.

References

S. Chand and P. Chand, Parametric study on the performance of solar air heater equipped with louvered fins †, vol. 32, no. 8, pp. 3965–3966, 2018.

A. B. Lingayat, V. P. Chandramohan, V. R. K. Raju, and V. Meda, A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights, Appl. Energy, vol. 258, no. May 2019, p. 114005, 2020.

A. Perwez and R. Kumar, Thermal performance investigation of the flat and spherical dimple absorber plate solar air heaters, Sol. Energy, vol. 193, no. September, pp. 309–323, 2019. DOI: https://doi.org/10.1016/j.solener.2019.09.066

A. Rai and V. Sachan, PERFORMANCE STUDY, no. July 2015, 2018.

M. Kumar, Experimental forced solar thin layer ginger drying, Facta Univ. Ser. Mech. Eng., vol. 14, no. 1, pp. 101–111, 2016. DOI: https://doi.org/10.22190/FUME1601101K

G. Padmanaban, P. K. Palani, and M. Murugesan, Performance of a desiccant assisted packed bed passive solar dryer for copra processing, Therm. Sci., vol. 21, pp. 419–426, 2017. DOI: https://doi.org/10.2298/TSCI17S2419P

S. Colin, International Journal of Heat and Technology: Foreword, Int. J. Heat Technol., vol. 26, no. 1, p. 107, 2008.

G. Kollektörlerİnİn, I. Performansinin, and D. Analİzİ, Experimental Analysis of Thermal Performance of Solar Air Collectors with Aluminum Foam Obstacles, Isı Bilim. ve Tek. Derg., vol. 35, no. 1, pp. 11–20, 2015.

A. K. Barik, A. Mohanty, J. R. Senapati, and M. M. Awad, Constructal design of different ribs for thermo-fluid performance enhancement of a solar air heater (SAH), Int. J. Therm. Sci., vol. 160, no. October 2020, p. 106655, 2021.

G. Deshmukh, P. Birwal, R. Datir, and S. Patel, Thermal Insulation Materials: A Tool for Energy Conservation, J. Food Process. Technol., vol. 08, no. 04, pp. 8–11, 2017. DOI: https://doi.org/10.4172/2157-7110.1000670

A. G. Safitra, L. Diana, and K. D. Ariswanda, Performance Analysis of Storage Tank with Natural Insulating Material in Solar Water Heater System, 2018 Int. Electron. Symp. Eng. Technol. Appl. IES-ETA 2018 - Proc., no. 1, pp. 113–116, 2019. DOI: https://doi.org/10.1109/ELECSYM.2018.8615565

R. Drochytka, M. Dvorakova, and J. Hodna, Performance Evaluation and Research of Alternative Thermal Insulation Based on Waste Polyester Fibers, Procedia Eng., vol. 195, pp. 236–243, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.04.549

M. Ali et al., Thermal and acoustic characteristics of novel thermal insulating materials made of Eucalyptus Globulus leaves and wheat straw fibers, J. Build. Eng., vol. 32, p. 101452, 2020.

J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. Wiley, 2013. DOI: https://doi.org/10.1002/9781118671603

R. American Society of Heating and A.-C. Engineers, ASHRAE Standard Methods of Testing to Determine the Thermal Performance of Solar Collectors, Report, vol. 1986, no. Ra 91, 1986.

A. G. Safitra, F. H. Sholihah, and I. N. Fauziyyah, Experimental study of slope angle and low e glazing effects on photovoltaic module, IOP Conf. Ser. Earth Environ. Sci., vol. 105, no. 1, 2018. DOI: https://doi.org/10.1088/1755-1315/105/1/012027

G. Murali, A. T. M. Sundari, S. Raviteja, S. Chanukyachakravarthi, and M. Tejpraneeth, Experimental study of thermal performance of solar aluminium cane air heater with and without fins, Mater. Today Proc., vol. 21, no. xxxx, pp. 223–230, 2020. DOI: https://doi.org/10.1016/j.matpr.2019.04.224

L. Diana, A. G. Safitra, D. Ichsani, and S. Nugroho, CFD Analysis of Airflow Through Prism Obstacles Inside Solar Air Heater Channel, J. Phys. Conf. Ser., vol. 1577, no. 1, 2020.

A. G. Safitra, L. Diana, and A. N. Azizah, CFD analysis of thermal improvement in flat plate solar air heater with rectangular baffles, 2019 Int. Conf. on Engineering, Technology and Industrial Appl. ICETIA 2019, pp. 1–12, 2019. accepted.

Published
2020-12-28
How to Cite
Safitra, A. G., Diana, L., Agil, D. M., Fareza, J. H., & Arini, N. R. (2020). Thermal Analysis of Solar Air Heater with Ventilator Turbine and Fins. EMITTER International Journal of Engineering Technology, 8(2), 510-523. https://doi.org/10.24003/emitter.v8i2.584
Section
Articles