Improvement of Segmentation Performance for Feature Extraction on Whirlwind Cloud-based Satellite Image using DBSCAN Clustering Algorithm
Abstract
Images contain a lot of information that can be used in a variety of areas. One of the images that have much information inside is satellite image. In order to extract the information properly, the image processing step should be performed properly. The segmentation process plays an important role in image processing, especially for feature extraction. Many ways were developed to perform the segmentation image. In this study, we apply DBSCAN clustering to segment images on whirlwind cloud feature extraction problems. DBSCAN is a density-based classifier method which means it is suitable to group a density-based data. While the image used in the segmentation process is the Himawari 8 satellite image which also contains density-based data. It contains various information about clouds condition like cloud type, cloud temperature, cloud humidity, rainfall potential based on cloud temperature, etc. This study uses Himawari 8 satellite images as input where the images taken are images several hours before a wirlwind event in an area, while the cluster method used is the DBSCAN algorithm. Clustering is done to get the extraction features of a wirlwind in the form of centroid points that characterize the movement of a cloud. Segmentation performance was observed based on the number of centroid points as a result of clustering several types of clouds in an area before a wirlwind occurred. Based on segmentation testing using the DBSCAN algorithm for cloud data in an area for several hours before a wirlwind, better segmentation performance was obtained compared to the segmentation results of the Meng hee heng k-means algorithm for the same test data specifications. DBSCAN separates a type of cloud in more detail that makes it easier to record each centroid of each cluster around the scene. It is even able to cluster small groups of clouds independently so that these small groups of clouds can also be detected as features.Downloads
References
Shalini Bhatia, Kumkum Saxena, Satellite Image Segmentation using Watershed based Algorithms, International Conference on Soft computing and Intelligent Systems, Bali, 2007.
Song Yuheng, Yan Hao, Image Segmentation Algorithms Overview, arXiv preprint arXiv: 1707.02051, 2017.
Dilpreet Kaur, Yadwinder Kaur, Various Image Segmentation
Techniques: A Review, International Journal of Computer Science and Mobile Computing, Vol. 3, No. 5 , pp.809 – 814, 2014.
Chris A Glasbey, Graham W Horgan, Image analysis for the biological sciences, John Wiley & Sons, Inc (New York), pp. 93-84, 1995.
Kaliyamurthie K.P, Parameswari D, Remote Sensing Imaging for Satellite Image, Indian Journal of Science and Technology, Vol. 8, 2015.
Peak, James E., and Paul M. Tag, Segmentation of Satellite Imagery Using Hierarchical Thresholding and Neural Networks, Journal of Applied Meteorology, Vol. 33, No. 5, pp. 605-616, 1994.
Nailussa’ada, Tri Harson, Achmad Basuki, Cloud Satellite Image Segmentation using Meng Hee Heng K-Means and DBSCAN Clustering, 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Bali, pp. 367-371, 2018.
Biplab Banerjee, Surender Varma G, Krishna Mohan Buddhiraju, Satellite Image Segmentation: A Novel Adaptive Mean-Shift Clustering Based Approach, 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, pp. 4319 – 4322, 2012.
Packyanathan Ganesan, Rajini V, Assessment of satellite image segmentation in RGB and HSV color space using image quality measures, 2014 International Conference on Advances in Electrical Engineering (ICAEE), Tamilnadu, pp. 1-5, 2014.
Maria Vakalopoulou, Konstantinos Karantzalos, Nikos Komodakis, Nikos Paragios, Building detection in very high resolution multispectral data with deep learning features, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, pp. 1873-1876, 2015
Packyanathan Ganesan, V Kalist, B. S. Sathish, Histogram based hill climbing optimization for the segmentation of region of interest in satellite images, 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Coimbatore, pp. 1-5, 2016.
Rhoma Cahyanti, Rendra Budi Hutama, Rafi Haidar Ramdlon, Windasari Dwiastuti, Fadilah Fahrul Hardiansyah, Achmad Basuki, Whirlwind Prediction using Cloud Movement Patterns on Satellite Image, 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing, Surabaya, pp. 252-257, 2017.
Robert M. Haralick, Linda G. Shapiro, Image Segmentation Techniques,Computer Vision Graphics and Image Processing, pp. 100-132. 1985.
Rafael C. Gonzales, Paul Wintz, Digital Image Processing, Addison-Wesley (United States of America), Ed. 2, 1987.
Deepak Jain, Manoj Singh, Dr. Arvind K. Sharma, Performance Enhancement of DBSCAN Density based Clustering Algorithm in Data Mining, International Conference on Energy, Communication, Data Analytics and Soft Computing, 2017.
Huan Yu, Wenhui Zhang, DBSCAN Data Clustering Algorithm for Video Stabilizing System, 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, 2013.
Dayang Sun, Binbin Li, Zhihong Qian, Research of Vehicle Counting Based on DBSCAN in Video Analysis, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1523-1527.
Copyright (c) 2019 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.