Design, Analysis and Performance Evaluation of Electrical Power Subsystem based on Triple-Junctions Solar PV Cells and SEPIC for a Conceptual 1u Cubesat Mission
Abstract
This study aims to popularize low voltage power supply design especially for space satellite Cubesat mission and other portable consumer electronic devices. In this context, a preliminary design of an electrical power subsystem (EPS) is carried out for a conceptual 1u Cubesat mission in this paper. Mathematical modeling of the basic elements of the EPS is presented. Photovoltaic (PV) power generation system that is selected is made up of triple-junction solar cells, and the battery charging system based on lithium technology as well as the power conditioning converters are selected based on single ended primary inductance converter topology popularly abbreviated as SEPIC. Triple-junction solar PV cell results are verified by comparing with the datasheet values. A maximum power point tracking algorithm which is known as perturb and observe is implemented and proportional-integral controller is used for the SEPIC. All of these are well analyzed, mathematically modeled and simulated. Feasibility of the designed EPS is verified by comparing with similar devices from different manufacturers.Downloads
References
Cal Poly, S.L.O., (2009). CubeSat Design Specification Rev. 12.The CubeSat Program..California: California State Polytechnic University.
Sellers, J.J., Astore, W.J., Giffen, R.B. and Larson, W.J., (2000).Understanding Space: an Introduction to Astronautics. 3rd edition. New York: McGraw Hill.
Craig S. Clark, Alejandro Lopez. Mazarias, “Power System Challenges for Small Satellite Missionsâ€, West of Scotland Science Park, Glasgow G20 0SP Scotland.
Sun, C.S. and Juang, J.C., (2012). Design and Implementation of a Microsatellite Electric Power Subsystem. Journal of Aeronautics, Astronautics and Aviation. Series A. 44(2), 67-73.
Jacobsen, L.E., (2012).Electrical Power System of the NTNU Test Satellite: Design of the EPS (Master's thesis, Institutt for elektronikk og telekommunikasjon).
Nishioka, K., Takamoto, T., Agui, T., Kaneiwa, M., Uraoka, Y. and Fuyuki, T., 2004. Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis. Japanese journal of applied physics, 43(3R), p.882.
Yuya Sakurada, Yasuyuki Ota, and Kensuke Nishioka Simulation of Temperature Characteristics of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light. J. Appl. Phys. 50 04DP13
Dida, A.H. and Bekhti, M., 2017, November. Study, modeling and simulation of the electrical characteristic of space satellite solar cells. In Renewable Energy Research and Applications (ICRERA), 2017 IEEE 6th International Conference on (pp. 983-987). IEEE.
Rezk, H. and Hasaneen, E.S., 2015. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Engineering Journal, 6(3), pp.873-881.
Das, N., Al Ghadeer, A. and Islam, S., 2014, September. Modelling and analysis of multi-junction solar cells to improve the conversion efficiency of photovoltaic systems. In Power Engineering Conference (AUPEC), 2014 Australasian Universities (pp. 1-5). IEEE.
Hussain, A.B., Abdalla, A.S., Mukhtar, A.S., Elamin, M., Alammari, R. and Iqbal, A., 2017. Modelling and simulation of single-and triple-junction solar cells using MATLAB/SIMULINK. International Journal of Ambient Energy, 38(6), pp.613-621.
Philipps, S.P., Guter, W., Welser, E., Schöne, J., Steiner, M., Dimroth, F. and Bett, A.W., 2012. Present status in the development of III–V multi-junction solar cells. In Next Generation of Photovoltaics (pp. 1-21). Springer, Berlin, Heidelberg.
Bett, A.W., Dimroth, F., Guter, W., Hoheisel, R., Oliva, E., Philipps, S.P., Schöne, J., Siefer, G., Steiner, M., Wekkeli, A. and Welser, E., 2009. Highest efficiency multi-junction solar cell for terrestrial and space applications. space, 25(25.8), pp.30-6.
Yunus Emre Yağan, Kadir Vardar*, Mehmet Ali Ebeoğlu 2018. Modeling and Simulation of PV Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 13, Issue 2 Ver. III (Mar. – Apr. 2018), PP 01-11 www.iosrjournals.org
Segev, G., Mittelman, G. and Kribus, A., 2012. Equivalent circuit models for triple-junction concentrator solar cells. Solar Energy Materials and Solar Cells, Vol. 98, pp.57-65.
Thakur, M. and Singh, B., 2015. A MATLAB/Simulink Modal of Triple-Junction Solar Cell and MPPT Based on Incremental Conductance Algorithm for PV System. International Journal of Engineering Research and Applications, 5(9), pp.92-95.
Dey, B.K., Khan, I., Mandal, N. and Bhattacharjee, A., 2016, October. Mathematical modelling and characteristic analysis of Solar PV Cell. In Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2016 IEEE 7th Annual (pp. 1-5). IEEE.
Sarkar, M.N.I., 2016. Effect of various model parameters on solar photovoltaic cell simulation: A SPICE analysis. Renewables: Wind, Water, and Solar, 3(1), p.13.
3G30C AZURSPACE Triple-Junction Solar Cell http://www.azurspace.com/images/products/0004148-00-01_DB_GBK_80%C2%B5m.pdf
Theristis, M. and O’Donovan, T.S., 2015. Electrical-thermal analysis of III–V triple-junction solar cells under variable spectra and ambient temperatures. Solar Energy, 118, pp.533-546.
Colasanti, S., Nesswetter, H., Zimmermann, C.G. and Lugli, P., 2014, June. Modeling and parametric simulation of triple junction solar cell for space applications. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th (pp. 1784-1789). IEEE.
Bimenyimana, S., Asemota, G.N.O. and Lingling, L., 2014. Output Power Prediction of Photovoltaic Module Using Nonlinear Autoregressive Neural Network. power, 31, p.12.
Priya, S. P., Radhika, A., & Vinothini, T. D. (2012). MPPT and SEPIC Based Controller Development for Energy Utilisation in CubeSats. India Conference (INDICON), Annual IEEE 143-148.
Waghulde, D., Kapgate, N., Pisal, S., Papal, S., Gajare, T., Rathod, B., ... & Phanse, A. (2016). Simulation, Design and Implementation of Various MPPT Systems for Micro Cube-Satellite Application. Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), Second International Innovative Applications. 80-84.
Li, N. (2012). Digital control strategies for DC/DC SEPIC converters towards integration (Doctoral dissertation, Lyon, INSA).
Zhang, D., (2006). AN-1484 Designing a SEPIC Converter. Texas Instruments. Dallas:
Jeff, F., (2016). Designing DC–DC Converters Based on SEPIC Topology. Analog Instrumentation Journal. Dallas: Texas Instruments. Web. 12.
ENDUROSAT CubeSat Structure. Available at: https://www.endurosat.com/products/#power-modules. Accessed 21.02.2019.
GOMspace Structure Available at: https://gomspace.com/Shop/subsystems/power-supplies/nanopower- p31u.aspx. Accessed 21.02.2019.
Copyright (c) 2019 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.