Improve of Water Flow Acceleration in Darrieus Turbine Using Diffuser NACA 11414 2,5R
Abstract
Indonesia has potential hydro energy around 70000 MW which has been used around 6% (3529 MW). One of the development constraint is the stream velocity in Indonesian rivers is relative low. It causes bigger turbine dimension needed to achieve power which is desired.  An alternative is to utilize adiffuser, which is a device that could accelerate the fluid flow in order to give more energy to the turbine. Based on contiunity equation, diffuser can increase velocity by ratio of cross-section area. It can be  used to achieve expected power as long as it is not too much reduce the pressure. This research is conducted in 0.566 m/s of water velocity with Darrieus turbine with hydrofoil NACA 0018, height 0.74 m, radius 0.17 m, chord 0.11 m and 3 number of blades. The performance (Cp) was determined by numerical and experimental without and with diffuser NACA 11414 2.5R for variation of angle 8o, 16o, and 20o. Both of those result showed that the best performance of NACA 11414 2,5R is on angle 16o which numerically has stream velocity 0,91 m/s of water and 7 times of Cp, while experimentally has 0,891 m/s of water velocity and 3,16 times of Cp. This diffuser could improve the power generated by the turbine and increase the turbine efficiency.Downloads
Copyright (c) 2018 EMITTER International Journal of Engineering Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright to this article is transferred to Politeknik Elektronika Negeri Surabaya(PENS) if and when the article is accepted for publication. The undersigned hereby transfers any and all rights in and to the paper including without limitation all copyrights to PENS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment. The copyright transfer form can be downloaded here .
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.
Retained Rights/Terms and Conditions
- Authors retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
- Authors may reproduce or authorize others to reproduce the work or derivative works for the author’s personal use or company use, provided that the source and the copyright notice of Politeknik Elektronika Negeri Surabaya (PENS) publisher are indicated.
- Authors are allowed to use and reuse their articles under the same CC-BY-NC-SA license as third parties.
- Third-parties are allowed to share and adapt the publication work for all non-commercial purposes and if they remix, transform, or build upon the material, they must distribute under the same license as the original.
Plagiarism Check
To avoid plagiarism activities, the manuscript will be checked twice by the Editorial Board of the EMITTER International Journal of Engineering Technology (EMITTER Journal) using iThenticate Plagiarism Checker and the CrossCheck plagiarism screening service. The similarity score of a manuscript has should be less than 25%. The manuscript that plagiarizes another author’s work or author's own will be rejected by EMITTER Journal.
Authors are expected to comply with EMITTER Journal's plagiarism rules by downloading and signing the plagiarism declaration form here and resubmitting the form, along with the copyright transfer form via online submission.