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Abstract 
 
Various types of computer systems including CAD/CAM systems have 
been introduced in machine industry. Some of the systems can handle 
assembly sequence planning, however it requires long time for 
planning. This paper proposes a method of generating assembly 
sequences efficiently. This method extracts some parts and/or 
subassemblies whose possibilities of being removed from a product 
are strong, and tests whether they can be removed without any 
geometric interference. By performing these operations repeatedly, 
the method generates a disassembly sequence of the product, and 
obtains an assembly sequence by reversing it. The extraction of some 
parts and/or subassemblies is performed, based on probabilistic tree 
transformation. The authors present a calculation example by using a 
software tool integrated with a CAD system. 
 

  
Keywords: Computer Aided Design (CAD), Computer Aided 
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1. INTRODUCTION 
CAD (Computer - aided Design) and CAM (Computer - aided 

manufacturing) systems have been widely introduced in machine industry. 
These systems are now essential for designing and manufacturing machines. 
Most of CAM systems aim at planning machining operations and generating so-
called NC data for machine tools. Some of the systems can handle assembly 
sequence planning, however it requires long time for planning.  

To reduce the time and cost, many algorithms and tools have been 
developed for generating assembly sequences automatically[1-13]. Almost all 
of them are based on a disassembly approach. This approach generates a 
disassembly sequence by identifying a part or subassembly to be removed 
repeatedly, and then generates an assembly sequence by reversing the 
disassembly sequence. In order to identify the part or subassembly to be 
removed, this approach tests which parts and/or subassemblies can be 
removed from the product without any geometric interference. The tests for 
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all the parts and/or subassemblies are computationally very expensive, 
especially in the case that the paths to remove them are searched for at the 
tests[10]. Therefore some of the works focus on reducing the number of the 
tests.  In this paper, we propose a method of reducing the number by using the 
heuristics and probabilistic tree transformation. 
 
2. RELATED WORKS 

To reduce the number of the tests, some approaches have been 
proposed. Simplification rules(e.g., superset and subset rules[4]) can avoid the 
unnecessary tests, however the number of the remainder(i.e., the necessary 
tests) is still large especially for the products composed of many parts. 
Subassembly extraction[5-8] and heuristics[11] are effective to reduce the 
number of the tests further. Reusing the assembly plans also considerably 
reduces the number of the tests at redesign or modification design stages[9]. 
 
3. ORIGINALITY 

To reduce the number of the tests, we propose probabilistic tree 
transformation, in which a probabilistic technique is introduced into tree 
transformation in graph theory[14], and we present a method of assembly 
sequence generation using the probabilistic tree transformation as well as the 
heuristics. This method extracts some parts and/or subassemblies whose 
possibilities of being removed are strong, and then performs the tests for only 
them using CAD data. The extraction of some parts and/or subassemblies is 
performed, based on the probabilistic tree transformation and heuristics. 
 
4. SYSTEM DESIGN 
4.1 Generation of Assembly Sequences 

 In our method, a product is represented as a part-connectivity graph, G,  
defined by:  
  G=(V, A)       (1) 
where V is a set of the nodes expressing the parts included in the product, and 
A is a set of the arcs expressing the connective relations among the parts. 
Figure 1 shows an example of the part-connectivity graph representation. 

The separation or disassembly of the product can be represented by the 
partition of the part-connectivity graph into subgraphs, each of which 
represents a part or subassembly, as shown in Fig. 1. The set of the arcs cut by 
the partition is called cut set. In Fig. 1, cut set {b, c, d} corresponds to the 
separation of the product into two subassemblies {1, 2} and {3, 4, 5}. By 
calculating such cut sets recursively, we can partition the part-connectivity 
graph recursively, and as a result a disassembly sequence can be obtained. We 
can also obtain an assembly sequence by reversing it, assuming that an 
assembly operation is the reverse of the disassembly operation. However, at 
the assembly operation, it is difficult to join three or more subassemblies 
and/or parts together simultaneously. Therefore, to partition the part-
connectivity graph, we use elementary cut sets, each of which separates the 
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product into two of the subassemblies and parts. Of the two, one that doesn't 
include a base part can be regarded as a part or subassembly to be removed 
from the other. 

 
 

Figure 1. An example of the part-connectivity graph and its separation 

  
Baldwin, et al.[3] calculated all the elementary cut sets(they call them 

assembly cut sets) to generate all feasible assembly sequences. This brings 
about considerable computational time if the separability corresponding to 
every elementary cut set is tested automatically. Therefore, we calculate some 
elementary cut sets that have strong possibilities of separating the product 
without any geometric interference, and then performs the tests for only them. 
This means the reduction of the search space for disassembly sequences. 
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Figure 2. Dissasembly sequence search by calculating cut sets 
 

 Figure 2 shows an example of disassembly sequence generation by 
calculating some elementary cut sets. As shown in this figure, to generate a 
disassembly sequence, we search an AND/OR graph[15], in which each node 
corresponds to an object(i.e., product, subassembly, or part) and each AND arc 
corresponds to the separation of a product or subassembly(i.e., it corresponds 
to an elementary cut set). We perform the search, based on a modified AO* 
algorithm. Murayama, et al.[9] described this algorithm in detail. The summary 
of this is as follows.  This algorithm first generates a node, N1, representing a 
product, as shown in Fig. 2. Then, this algorithm calculates some elementary 
cut sets whose number is given by the operator in advance of searching. In the 
example shown in Fig. 2, two elementary cut sets {a, b} and {b, c, d} are 
calculated. According to the calculated cut sets, this algorithm generates the 
child nodes and arcs. In Fig. 2, four child nodes(N2, N3, N4, and N5) and two 
AND arcs(AND arc1 and AND arc2) are generated at Stage2. Next, it is tested 
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whether the separation corresponding to each of the newly generated AND 
arcs can be done without any geometric interference. We perform this test 
automatically using CAD data by a method we proposed before[10]. Next, this 
algorithm selects a node and calculates some elementary cut sets again to 
generate its child nodes. In Fig. 2, node N3 is selected and its child nodes(N6, 
N7, N8, and N9) are generated at Stage3. These operations are repeated until a 
disassembly sequence is obtained. At selecting a node, this algorithm takes 
account of the costs for separating the product and subassemblies. The costs 
are calculated through the tests mentioned above. By considering the costs, 
this algorithm can generate a good disassembly sequence whose cost is the 
smallest in the reduced search space.  
 This algorithm and AO* algorithm[15] are identical in the way of 
handling the costs and selecting a node in searching. However, this algorithm 
is different from AO* algorithm in that this algorithm searches the reduced 
search space(i.e., this algorithm generates not all but some child nodes and 
AND arcs), as shown in Fig. 3(a). Therefore, this algorithm doesn’t always find 
an optimal solution because the reduced search space may not include the 
optimal solution. However, this algorithm can find the best solution in the 
reduced search space. Figure 3(b) shows a case that the reduced search space 
doesn’t include any feasible region(i.e., a case that all the separations 
corresponding to the generated elementary cut sets are infeasible), however 
this is very rare. In such a case, this algorithm expands the search space by 
adding some child nodes and AND arcs to the AND/OR graph. Figure 3(c) 
shows a case that the reduced search space includes small feasible region(i.e., 
a case that almost all the separations corresponding to the generated 
elementary cut sets are infeasible). In such a case, we may not obtain a good 
solution. To avoid such a case(i.e., to let the reduced search space include large 
feasible region), our method calculates some good elementary cut sets that 
have strong possibilities of separating the product or subassembly by using 
the heuristics and probabilistic tree transformation. The method for utilizing 
the heuristics and probabilistic tree transformation is described in the 
following sections.  
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Figure 3. Relationship among the reduced search space and feasible/ifeasible 
regions 

 

4.2 Generation of Cut Sets using Heuristics and Probabilistic Tree 
Transformation 
 Figure 4 shows the procedure for utilizing the heuristics. Each of the 
operations in the procedure is described as follows.  
 

 
Figure 4. Procedure for generating good elementary cut sets 
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4.2.1 Heuristic Precedence Graph 
 First, we generate a heuristic precedence graph by using the heuristics. 
Each node of this graph expresses a connective relation between two parts, 
and each arc expresses a heuristic precedence relation between two 
connective relations. This heuristic precedence relation means that the 
connective relation represented by its terminal node very probably emerges 
earlier than that represented by its starting node when the product is 
assembled( conversely, the connective relation represented by the starting 
node is very probably released earlier than that represented by the terminal 
node when the product is disassembled ).  
 We can generate such a heuristic precedence graph by applying 
heuristic rules to the CAD data of a product. Figure 5 shows an example of 
applying one of the heuristic rules. Such heuristic rules can be induced 
automatically by a machine-learning technique[11]. 
 
 

 
 

Figure 5. An example of the precedence graph generation by applying  
a heurustic rule 

 

Fig. 5  An example of the precedence graph generation 
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Figure 6. An example of weight assignment  
using predence graph 

 
4.2.2 Weight Assignment 
 We combine the heuristic precedence graphs, each of which is made by 
applying one of the heuristic rules, and change it to a hierarchical graph, as 
shown in Fig. 6 (a). This change is executed by using a technique in Interpretive 
Structural Modeling[16]. By using the hierarchical graph, we assign the 
weights to the connective relations in the part-connectivity graph according to 
the levels in which the connective relations are included, as shown in Fig. 6. 
For example, connective relation e is in level 3 of the hierarchical graph, 
therefore 3 is assigned to it in the part-connectivity graph. The larger weight 
the connective relation has, the earlier it very probably emerges in the 
assembly stage(conversely, the smaller weight the connective relation has, the 
earlier it is very probably released in the disassembly stage).  
 By using the weights, we can evaluate the cut sets from the viewpoint 
of the possibility of separating the product or subassembly. Namely, we can 
regard an elementary cut set composed of the arcs with small weights as one 
that has strong possibility of separating the product or subassembly. In our 
method, each elementary cut set Ci is evaluated by: 
  Ei=max{w1,w2,...,wj,...,wn}     (2) 
where wj is the weight of arc j included in cut set Ci. The smaller Ei is, the better 
the cut set is. For example, Ei of elementary cut set {b, c, d} shown in Fig. 6 is 1. 
As this value is the smallest, this cut set can be considered as the best one. 

 
4.2.3 Probabilistic Generation of Cut Sets 
 The simplest method for generating the good elementary cut sets(i.e., 
the elementary cut sets composed of the arcs with small weights) is to generate 
all the cut sets and select the good ones out of them. However it takes very long 
time to generate all the cut sets especially for the products composed of many 
parts. Therefore our method generates some good elementary cut sets 
efficiently without generating all the cut sets.  
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4.2.3.1 Tree and Fundamental Cut Sets  
To generate the elementary cut sets, first, we generate a tree T in the 

part-connectivity graph. A tree is defined by a set of the arcs that connect all 
the nodes but don’t include any circuits. In Fig. 7, the set of the arcs drawn in 
bold lines, {b, c, e, g}, is an example of the tree. Using tree T, we can generate 
fundamental cut sets, each of which contains one arc included in T. In the 
example shown in Fig. 7, C1, C2, C3, and C4 are the fundamental cut sets for tree 
T. Such fundamental cut sets are also necessarily elementary cut sets. 
Therefore, if they are good ones(i.e., the elementary cut sets composed of the 
arcs with small weights), they can be used as the candidates for partitioning 
the part-connectivity graph in searching the AND/OR graph. 
 

 
 

Figure 7. An example of the tree and fundamental cut sets 

 
4.2.3.2 Probabilistic Tree Transformation  

By using tree T, we can generate some elementary cut sets whose 
number is N(V)-1, where N(V) is the number of the nodes included in the part-
connectivity graph G(V, A). We can generate the other elementary cut sets by 
performing the tree transformation, in which a member of tree is replaced 
with another arc. The procedure is as follows: 
 
Step 1: Select a cut set Ci with small Ei out of the fundamental cut sets. 
Step 2: If the arc with the maximum weight in Ci is a member of cotree CT(=A-

T), call the arc ARC and do the following procedure. Otherwise(i.e., if the 
arc is a member of tree T), go back to Step 1. 

Step 3: Add ARC to T. By adding this, a circuit becomes included in T. Select and 
delete the arc with the small weight in the circuit and add it to the 
cotree. This arc may become a new member of Ci. As a result of this 
operation, a new tree is generated. 

Step 4: Generate new fundamental cut sets corresponding to the new tree. 
 
By executing the procedure, we can improve the good cut set further. Figure 8 
shows an example of applying the procedure to the case of the weight 
assignment shown in Fig. 6(b). In this example, first, cut set C1 whose E1 is 2 
is selected in Step 1. Next, the maximum-weight arc a in C1 is selected and 
added to the tree in Step 2 and 3. As a result, circuit{a, b, c} is generated, as 
shown in Fig. 8(b). Then arc c whose weight is small is deleted from the circuit 
and added to the cotree. Consequently the new tree {a, b, e, g}and the new 

Fig. 7  An example of the tree and fundamental cut sets
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fundamental cut set C5, which is better than C1 selected in Step 1, are 
generated, as shown in Fig. 8(c). 
 However, if we select the cut set with the minimum Ei in Step 1 and the 
arc with the minimum weight in Step 3, we can generate only a limited number 
of cut sets and therefore we may come to rest in local minimum of the space 
for searching the cut sets. To avoid it, we propose the probabilistic tree 
transformation that selects a cut set in Step 1 and an arc in Step 3 
probabilistically.  Namely, in Step 1 we select cut set Ci with the following 
probability PCi: 

  PCi
Ei

Ei



1

1

/

( / )
       (3) 

The smaller Ei is, the larger PCi is(i.e., the cut set with small Ei is very probably 
selected). In the same way, we select arc j in Step 3 with the following 
probability PAj: 

  PAj
wj

wj



1

1

/

( / )
       (4) 

Roulette Wheel Selection Algorithm[17] is used for the selections taking 
account of the probabilities. 
 The above-mentioned procedure is repeated and all the generated cut 
sets are memorized. Then, some good cut sets are selected out of them to 
partition the part-connectivity graph. 

As we mentioned above, the tree transformation, in which the cut set 
with the minimum Ei in Step 1 and the arc with the minimum weight in Step 3 
are selected, generates a limited number of cut sets, whereas the probabilistic 
tree transformation can generate a variety of cut sets, and this brings about a 
better assembly sequence search. 
 



Volume 6, No. 2, December 2018 
 

EMITTER International Journal of Engineering Technology, ISSN: 2443-1168 
 
 

364 

 
 

Figure 8. An example of the tree transformation 

 
5. EXPERIMENT AND ANALYSIS 

To demonstrate the effectiveness of our method, we developed a 
software tool which is integrated with a CAD system. By using the tool, we 
present a calculation example of a gear pump. Figure 9 shows the 3d-model of 
the gear-pump, which we built by using the CAD system. Figure 10 shows its 
graph representation and Table 1 shows its parts list. By using the model, this 
software tool generated an assembly sequence, with using four good cut sets 
at a time to partition the part-connectivity graph. Figure 11 shows the 
generated assembly sequence. In this figure, SAi(i=0,1,...,14) is the product or 
subassembly. Table 2 shows the parts included in the product and 
subassemblies. This assembly sequence is an optimal one, however our 
approach doesn’t always find optimal ones because of the reduction of the 
search space. We could not compare our computational time with those of the 
other approaches because it is a very hard work to implement the other 
approaches on our computer. However, as the number of the tests for 
separability is about 10 percent of that in the case of generating all the 
elementary cut sets, the computational time of our method may be reduced to 
about 10 percent. 
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Figure 9.  3d-model of the gear pump 
 

 
 

Figure 10. Part-connectivity graph of the gear pump 
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Fig. 10  Part-connectivity graph of the gear pump

9     valve guide 

10   valve guide cover 

11   packing 

12   sheet packing 

13   tap bolt 

14   washer 

15   stud bolt 

16   nut

1    body 

2    cover 

3    shaft with gear 

4    shaft with gear 

5    packing 

6    packing gland 

7    valve 

8    coil

Table 1  Parts list of the gear pump
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Figure 11. Dissambly/assembly sequence generated by the software tool 
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6. CONCLUSION 
We proposed the efficient method for generating assembly sequences. 

This method extracts some parts and/or subassemblies whose possibilities of 
being removed from a product are strong, and tests whether they can be 
removed without any geometric interference. By performing these operations 
repeatedly, the method generates a disassembly sequence of the product, and 
obtains an assembly sequence by reversing it. The characteristics of this 
method are to reduce the search space and to avoid to come to rest in local 
optimum by using the heuristics and probabilistic tree transformation. We 
developed the software tool and carried out the experiment using the tool. As 
a result of the experiment, the tool found the optimal assembly sequence, and 
the number of the tests for separability is about 10 percent of that of the whole 
tests. This result shows that the proposed method could find a good assembly 
sequence and bring about a large reduction in the computation time for 
assembly sequence planning. 
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